Publikationen (FIS)

Time-resolving state-specific molecular dissociation with XUV broadband absorption spectroscopy

verfasst von
Alexander Magunia, Marc Rebholz, Elisa Appi, Christina C. Papadopoulou, Hannes Lindenblatt, Florian Trost, Severin Meister, Thomas Ding, Michael Straub, Gergana D. Borisova, Junhee Lee, Rui Jin, Alexander von der Dellen, Christian Kaiser, Markus Braune, Stefan Düsterer, Skirmantas Ališauskas, Tino Lang, Christoph Heyl, Bastian Manschwetus, Sören Grunewald, Ulrike Frühling, Ayhan Tajalli, Ammar Bin Wahid, Laura Silletti, Francesca Calegari, Philip Mosel, Uwe Morgner, Milutin Kovacev, Uwe Thumm, Ingmar Hartl, Rolf Treusch, Robert Moshammer, Christian Ott, Thomas Pfeifer
Abstract

The electronic and nuclear dynamics inside molecules are essential for chemical reactions, where different pathways typically unfold on ultrafast timescales. Extreme ultraviolet (XUV) light pulses generated by free-electron lasers (FELs) allow atomic-site and electronic-state selectivity, triggering specific molecular dynamics while providing femtosecond resolution. Yet, time-resolved experiments are either blind to neutral fragments or limited by the spectral bandwidth of FEL pulses. Here, we combine a broadband XUV probe pulse from high-order harmonic generation with an FEL pump pulse to observe dissociation pathways leading to fragments in different quantum states. We temporally resolve the dissociation of a specific O2+ state into two competing channels by measuring the resonances of ionic and neutral fragments. This scheme can be applied to investigate convoluted dynamics in larger molecules relevant to diverse science fields.

Organisationseinheit(en)
Institut für Quantenoptik
Ultrafast Laser Laboratory
QuantumFrontiers
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
Max-Planck-Institut für Kernphysik
Ruprecht-Karls-Universität Heidelberg
Deutsches Elektronen-Synchrotron (DESY)
Helmholtz-Institut Jena
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Universität Hamburg
Kansas State University
Typ
Artikel
Journal
Science advances
Band
9
Anzahl der Seiten
7
ISSN
2375-2548
Publikationsdatum
22.11.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemein
Elektronische Version(en)
https://doi.org/10.1126/SCIADV.ADK1482 (Zugang: Offen)